PREDICTION/ESTIMATION WITH SIMPLE LINEAR MODELS: IS IT REALLY THAT SIMPLE? By
نویسندگان
چکیده
Consider the simple normal linear regression model for estimation/prediction at a new design point. When the slope parameter is not obviously nonzero, hypothesis testing and model selection methods can be used for identifying the right model. We compare performance of such methods both theoretically and empirically from different perspectives for more insight. The testing approach, in spite of being the “standard approch”, performs poorly. We also found that the frequently told story “BIC is good when the true model is finite-dimensional and AIC is good when the true model is infinite-dimensional” is far from being accurate. In addition, despite some successes in the effort to go beyond the debate between AIC and BIC by adaptive model selection, it turns out that it is not possible to share the most essential properties of them by any model selection method. When model selection methods have difficulty in selection, model combining is seen to be a better alternative.
منابع مشابه
Isotonic Change Point Estimation in the AR(1) Autocorrelated Simple Linear Profiles
Sometimes the relationship between dependent and explanatory variable(s) known as profile is monitored. Simple linear profiles among the other types of profiles have been more considered due to their applications especially in calibration. There are some studies on the monitoring them when the observations within each profile are autocorrelated. On the other hand, estimating the change point le...
متن کاملPhase II monitoring of multivariate simple linear profiles with estimated parameters
In some applications of statistical process monitoring, a quality characteristic can be characterized by linear regression relationships between several response variables and one explanatory variable, which is referred to as a “multivariate simple linear profile.” It is usually assumed that the process parameters are known in Phase II. However, in most applications, this assumption is viola...
متن کاملپیش بینی تقاضای کوتاه مدت آب شهر تهران با استفاده از شبکه های عصبی مصنوعی
Short-term water demand modeling plays a key role in urban water resources planning and management. The importance of demand prediction is even greater in countries like Iran with frequent periods of drought. Short-term water demand estimation is useful for planning and management of water and wastewater facilities such as pump scheduling, control of reservoirs and tanks volume, pressure manage...
متن کاملRock Brittleness Prediction Using Geomechanical Properties of Hamekasi Limestone: Regression and Artificial Neural Networks Analysis
The cold climate is a favorable parameter for the development of tension cracks and decrease of rock brittleness. Therefore, this paper attempts to investigate the Hamekasi porous limestone in order to predict the brittleness indices during freeze-thaw cycles. The freeze–thaw test was executed for one cycle including 16 h of freezing, and 8 h of thawing. The geo mechanical properties and brittl...
متن کاملPrediction of boiling point and water solubility of crude oil hydrocarbons using sub-structural molecular fragments method
The quantitative structure–property relationship (QSPR) method is used to develop the correlation between structures of crude oil hydrocarbons (80 compounds) and their boiling point and water solubility. Sub-structural molecular fragments (SMF) calculated from structure alone were used to represent molecular structures. A subset of the calculated fragments selected using stepwise regression (fo...
متن کامل